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The Chapman-Enskog method of solution of kinetic equations, such as the Boltzmann equation, is based on
an expansion in gradients of the deviations of the hydrodynamic fields from a uniform reference state �e.g.,
local equilibrium�. This paper presents an extension of the method so as to allow for expansions about
arbitrary, far-from-equilibrium reference states. The primary result is a set of hydrodynamic equations for
studying variations from the arbitrary reference state which, unlike the usual Navier-Stokes hydrodynamics,
does not restrict the reference state in any way. The method is illustrated by application to a sheared granular
gas which cannot be studied using the usual Navier-Stokes hydrodynamics.
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I. INTRODUCTION

The determination of the one-body distribution function,
which gives the probability of finding a particle at some
given position, with a given velocity at a given time, is one
of the central problems in nonequilibrium statistical mechan-
ics. Its time-evolution is in many cases well-described by
approximate kinetic equations such as the Boltzmann equa-
tion �1� for low-density gases and the revised Enskog equa-
tion �2,3� for denser hard-sphere gases and solids. Only
rarely are exact solutions of these equations possible. Prob-
ably the most important technique for generating approxi-
mate solutions to one-body kinetic equations is the
Chapman-Enskog method which, as originally formulated,
consists of a gradient expansion about a local-equilibrium
state �4,1�. The goal in this approach is to construct a par-
ticular type of solution, called a “normal solution,” in which
all space and time dependence of the one-body distribution
occurs implicitly via its dependence on the macroscopic hy-
drodynamic fields. The latter are, for a simple fluid, the den-
sity, velocity, and temperature fields corresponding to the
conserved variables of particle number, momentum, and en-
ergy, respectively. �In a multicomponent system, the partial
densities are also included.� The Chapman-Enskog method
proceeds to develop the solution perturbatively in the gradi-
ents of the hydrodynamic fields: the distribution is developed
as a functional of the fields and their gradients and at the
same time the equations of motion of the fields, the hydro-
dynamic equations, are also developed. The zeroth-order dis-
tribution is the local-equilibrium distribution; at first order,
this is corrected by terms involving linear gradients of the
hydrodynamic fields which in turn are governed by the Euler
equations �with an explicit prescription for the calculation of
the pressure from the kinetic theory�. At second order, the
hydrodynamic fields are governed by the Navier-Stokes
equations, at third order, by the Burnett equations, etc. The
calculations involved in extending the solution to each suc-
cessive higher order are increasingly difficult and since the
Navier-Stokes equations are usually considered an adequate
description of fluid dynamics, results above third order �Bur-

nett order� for the Boltzmann equation and above second
�Navier-Stokes� order for the Enskog equation are sparse.
The extension of the Chapman-Enskog method beyond the
Navier-Stokes level is, however, not physically irrelevant
since only by doing so is it possible to understand non-
Newtonian viscoelastic effects such as shear thinning and
normal stresses which occur even in simple fluids under ex-
treme conditions �5,6�.

Recently, interest in non-Newtonian effects has increased
because of their importance in fluidized granular materials.
Granular systems are composed of particles—grains—which
lose energy when they collide. As such, there is no equilib-
rium state: an undriven homogeneous collection of grains
will cool continuously. This has many interesting conse-
quences such as the spontaneous formation of clusters in the
homogeneous gas and various segregation phenomena in
mixtures �7–10�. The applicability of standard kinetic theory
to fluidized granular materials has long been questioned �see,
e.g., Ref. �11��. While it is certainly true that the assumption
of binary collisions that underlies the Boltzmann and Enskog
equations does not apply to some important circumstances
such as when jamming and clusters form, there is support
both from experiment and from computer simulation studies
for the usefulness of the kinetic-theory description under
conditions in which the system remains fluidized so that bi-
nary collisons dominate the dynamics. �A recent discussion
of the evidence supporting the use of kinetic theory in fluid-
ized granular systems can be found, e.g., in Ref. �12�.� The
collisional cooling also gives rise to a unique class of non-
equilibrium steady states due to the fact that the cooling can
be balanced by the viscous heating that occurs in inhomoge-
neous flows. One of the most widely studied examples of
such a system is a granular fluid undergoing planar Couette
flow where the velocity field takes the form v�r�=ayx̂, where
a is the shear rate. The common presence of non-Newtonian
effects, such as normal stresses, in these systems has long
been recognized as signaling the need to go beyond the
Navier-Stokes description �13�. As emphasized by Santos et
al. �14�, the balance between the velocity gradients, which
determine the rate of viscous heating, and the cooling, aris-
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ing from a material property, means that such fluids are in-
herently non-Newtonian in the sense that the sheared state
cannot be viewed as a perturbation of the unsheared, homo-
geneous fluid and so the usual Navier-Stokes equations can-
not be used to study either the rheology or the stability of the
sheared granular fluid. One of the goals of the present work
is to show that a more general hydrodynamic description can
be derived for this, and other flow states, which is able to
accurately describe such far-from-equilibrium states. The
formalism developed here is general and not restricted to
granular fluids although they do provide the most obvious
application. Indeed, an application of this form of hydrody-
namics has recently been presented by Garzó �15� who stud-
ied the stability of a granular fluid under strong shear.

The extension of the Chapman-Enskog method to derive
the hydrodynamics for fluctuations about an arbitrary non-
equilibrium state might at first appear trivial but in fact it
involves a careful application of the ideas underlying the
method. To illustrate, let f�r ,v , t� be the probability to find a
particle at position r with velocity v at time t. For a
D-dimensional system in equilibrium, this is just the �space
and time-independent� Gaussian distribution

f�r,v,t� = �0�v;n,T,U� = n� m

2�kBT
�D/2

exp�− �v − U�2/kBT� ,

�1�

where n is the number density, kB is Boltzmann’s constant, T
is the temperature, m is the mass of the particles, and U is the
center-of-mass velocity. The zeroth-order approximation in
the Chapman-Enskog method is the localized distribution
f �0��r ,v , t�=�0(v ;n�r , t� ,T�r , t� ,U�r , t�) or, in other words,
the local equilibrium distribution. In contrast, a homoge-
neous nonequilibrium steady state might be characterized by
some time-independent distribution

f�r,v,t� = �ss�v;n,T,U� �2�

but the zeroth-order approximation in the Chapman-Enskog
method will not in general be the localized steady-state dis-
tribution, f �0��r ,v , t���ss(v ;n�r , t� ,T�r , t� ,U�r , t�). The rea-
son is that a steady state is the result of a balance—in the
example given above, it is a balance between viscous heating
and collisional cooling. Thus any change in density must be
compensated by, say, a change in temperature or the system
is no longer in a steady state. This therefore gives a relation
between density and temperature in the steady state, say n
=nss�T�, so that one has �ss�v ;n ,T ,U�=�ss(v ;nss�T� ,T ,U).
Clearly, it makes no sense to simply “localize” the hydrody-
namic variables as the starting point of the Chapman-Enskog
method since, in a steady state, the hydrodynamic variables
are not independent. Limited attempts have been made in the
past to perform the type of generalization suggested here. In
particular, Lee and Dufty considered this problem for the
specific case of an ordinary fluid under shear with an artifi-
cial thermostat present so as to make possible a steady state
�16,17�. However, the issues discussed in this paper were
circumvented through the use of a very particular type of
thermostat so that, while of theoretical interest, that calcula-
tion cannot serve as a template for the more general problem.

In Sec. II, the abstract formulation of the Chapman-
Enskog expansion for fluctuations about a nonequilibrium
state is discussed. It not only requires care in understanding
the zeroth order approximation, but a generalization in the
concept of a normal solution. In Sec. III, the method is illus-
trated by application to the simple kinetic theory for a
sheared granular gas proposed by Brey, Dufty, and Santos
�18�. While a kinetic model can only be considered as a
crude approximation to a more complete kinetic description,
such as the Boltzmann equation, there is evidence supporting
the semiquantitative accuracy of such models in describing
the low-density fluids under shear flow. Comparisons of nu-
merical solutions of the Boltzmann equation to the predic-
tions of kinetic models such as the one used here show sur-
prisingly good agreement in the description of such
phenomena as normal stresses, shear thinning, and the pres-
sure tensor and heat-flux vector in the steady state are all
reasonably well-reproduced �19–21�. It is therefore of prac-
tical relevence, as well as of some intrinisic interest, to ex-
tend the analysis of this simple model. On the other hand, the
simplicity of the model will allow for a clearer illustration of
the principles of the extension of the Chapman-Enskog
method to nonequilibrium reference states than would be
possible with a more complex example such as the Boltz-
mann equation. The result is that exact expressions in the
form of ordinary differential equations can be given for the
full complement of transport coefficients. The section con-
cludes with a brief summary of the resulting hydrodynamics
and of the linearized form of the hydrodynamic equations
which leads to considerable simplification including explicit
expressions for the transport coefficients in the steady state.
The paper ends in Sec. IV with a summary of the results, a
comparison of the present results to the results of the stan-
dard Chapman-Enskog analysis, and a discussion of further
applications.

II. THE CHAPMAN-ENSKOG EXPANSION
ABOUT AN ARBITRARY STATE

A. Kinetic theory

Consider a single-component fluid composed of particles
of mass m in D dimensions. In general, the one-body distri-
bution will obey a kinetic equation of the form

� �

�t
+ v · �� f�r,v,t� = J�r,v,t�f� �3�

where the collision operator J�r ,v , t � f� is a function of posi-
tion and velocity and a functional of the distribution func-
tion. No particular details of the form of the collision opera-
tor will be important here but all results are formulated with
the examples of BGK-type relaxation models, the Boltzmann
equation and the Enskog equation in mind. The first five
velocity moments of f define the number density

n�r,t� =� dvf�r,v,t� , �4�

the flow velocity
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u�r,t� =
1

n�r,t� � dvvf�r,v,t� , �5�

and the kinetic temperature

T�r,t� =
m

Dn�r,t�kB
� dvC2�r,t�f�r,v,t� , �6�

where C�r , t�	v−u�r , t� is the peculiar velocity. The mac-
roscopic balance equations for density n, momentum mu,
and energy �D /2�nkBT follow directly from Eq. �3� by mul-
tiplying with 1, mv, and 1

2mC2 and integrating over v:

Dtn + n � · u = 0,

Dtui + �mn�−1� jPij = 0,

DtT +
2

DnkB
�� · q + Pij� jui� = − �T , �7�

where Dt=�t+u ·� is the convective derivative. The micro-
scopic expressions for the pressure tensor P=P�f�, the heat
flux q=q�f� depend on the exact form of the collision opera-
tor �see Refs. �1,22� for a general discussion� but as indi-
cated, they are in general functionals of the distribution,
while the cooling rate � is given by

��r,t� = −
1

Dn�r,t�kBT�r,t� � dvmC2J�r,v,t�f� . �8�

B. Formulation of the gradient expansion

The goal of the Chapman-Enskog method is to construct a
so-called normal solution to the kinetic equation, Eq. �3�. In
the standard formulation of the method �1�, this is defined as
a distribution f�r ,v , t� for which all of the space and time
dependence occurs through the hydrodynamic variables, de-
noted collectively as �	
n ,u ,T�, and their derivatives so
that

f�r,v,t� = f�v;��r,t�,���r,t�,����r,t�, . . . � . �9�

The distribution is therefore a functional of the fields ��r , t�
or, equivalently in this case, a function of the fields and their
gradients to all orders. In the following, this particular type
of functional dependence will be denoted more compactly
with the notation f(v ; ���n���r , t��) where the index, n, indi-
cates the maximum derivative that is used. When all deriva-
tives are possible, as in Eq. �9� the notation f�r ,v , t�
= f(v ; �������r , t��) will be used. The kinetic equation, Eq.
�3�, the balance equations, Eqs. �7�, and the definitions of the
various fluxes and sources then provide a closed set of equa-
tions from which to determine the distribution. Note that
since the fluxes and sources are functionals of the distribu-
tion, their space and time dependence also occurs implicitly
via their dependence on the hydrodynamic fields and their
derivatives.

Given such a solution has been found for a particular set
of boundary conditions yielding the hydrodynamic state
�0�r , t� with distribution f0(v ; ������0�r , t��), the aim is to

describe deviations about this state, denoted ��, so that the
total hydrodynamic fields are �=�0+��. In the Chapman-
Enskog method, it is assumed that the deviations are smooth
in the sense that

�� 	 l � �� 	 l2 � ��� ¯ , �10�

where l is the mean free path, so that one can work pertur-
batively in terms of the gradients of the perturbations to the
hydrodynamic fields. To develop this perturbation theory
systematically, it is convenient to introduce a fictitious small
parameter, 
, and to write the gradient operator as �=��0�

+
��1� where the two operators on the right are defined by
�0�=��0 and �1�=���. This then generates an expansion
of the distribution that looks like

f„v;�������r,t��…

= f �0�
„v;�0

�����r,t�…

+ 
f �1�
„v;�1��,�0

�����r,t�…

+ 
2f �2�
„v;�1�1��,��1���2,�0

�����r,t�… + ¯ ,

�11�

where f �1� will be linear in �1��, f �2� will be linear in
�1�1�� and ��1���2, etc. This notation is meant to be taken
literally: the quantity �0

�����r , t�= 
��r , t� ,�0��r , t� , . . . �
= 
��r , t� ,��0�r , t� , . . . � so that at each order in perturbation
theory, the distribution is a function of the exact field ��r , t�
as well as all gradients of the reference field. This involves a
departure from the usual formulation of the Chapman-
Enskog definition of a normal state. In the standard form, the
distribution is assumed to be a functional of the exact fields
��r , t� whereas here it is proposed that the distribution is a
functional of the exact field ��r , t� and of the reference state
�0�r , t�. Of course, it is obvious that in order to study devia-
tions about a reference state within the Chapman-Enskog
framework, the distribution will have to be a functional of
that reference state. Nevertheless, this violates, or general-
izes, the usual definition of a normal solution since there are
now two sources of space and time dependence in the distri-
bution: the exact hydrodynamics fields and the reference hy-
drodynamic state. For deviations from an equilibrium state,
this point is moot since ��0�r , t�=0, etc.

The perturbative expansion of the distribution will gener-
ate a similar expansion of the fluxes and sources through
their functional dependence on the distribution, see, e.g., Eq.
�8�, so that one writes

Pij = Pij
�0� + 
Pij

�1� + ¯ �12�

and so forth. Since the balance equations link space and time
derivatives, it is necessary to introduce a multiscale expan-
sion of the time derivatives in both the kinetic equation and
the balance equations as

�

�t
f = �t

�0�f + 
�t
�1�f + ¯ . �13�

The precise meaning of the symbols �t
�0�, �t

�1� is that the bal-
ance equations define �t

�i� in terms of the spatial gradients of
the hydrodynamic fields and these definitions, together with
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the normal form of the distribution, define the action of these
symbols on the distribution. Finally, to maintain generality,
note that sometimes �specifically in the Enskog theory� the
collision operator itself is nonlocal and must be expanded as
well in gradients in �� so that we write

J�r,v,t�f� = J0�r,v,t�f� + 
J1�r,v,t�f� + ¯ �14�

and it is understood that J0�r ,v , t � f� by definition involves
no gradients with respect to the perturbations ���r , t� but
will, in general, contain gradients of all orders in the refer-
ence fields �0�r , t�. �Note that the existence of a normal so-
lution is plausible if the spatial and temporal dependence of
the collision operator is also normal which is, in fact, gener-
ally the case. However, for simplicity, no effort is made here
to indicate this explicitly.� A final property of the perturbative
expansion concerns the relation between the various distri-
butions and the hydrodynamic variables. The zeroth order
distribution is required to reproduce the exact hydrodynamic
variables via

� n�r,t�
n�r,t�u�r,t�
Dn�r,t�kBT

 =� � 1

v

mC2 f �0��v;�0
�����r,t��dv �15�

while the higher order terms are orthogonal to the first three
velocity moments

� � 1

v

mC2 f �n��v;�0
�����r,t��dv = 0,n � 0, �16�

so that the total distribution f = f �0�+ f �1�+¯ satisfies Eqs.
�4�–�6�.

C. The reference state

Recall that the goal is to describe deviations from the
reference state �0�r , t� which corresponds to the distribution
f0�r ,v , t ; ��0�� and in fact the distribution and fields are re-
lated by the definitions given in Eqs. �4�–�6�. The reference
distribution is itself assumed to be normal so that the depen-
dence on r and t occurs implicitly through the fields. In terms
of the notation used here, the reference distribution satisfies
the kinetic equation, Eq. �9�, and the full, nonlinear balance
equations, Eqs. �7�. Using the definitions given above, these
translate into

��t
�0� + v · ��0��f0�r,v,t;��0�� = J0�r,v,t�f0� �17�

and the fields are solutions to the full, nonlinear balance
equations

�t
�0�n0 + u · ��0�n0 + n0�

�0� · u0 = 0,

�t
�0�u0,i+ u0 · ��0�u0.i + �mn0�−1� j

�0�Pij
�00� = 0,

�t
�0�T0+ u0 · ��0�T0 +

2

Dn0kB
���0� · q�00� + Pij

�00�� j
�0�u0,i�

= − ��00�T0, �18�

where, e.g., Pij
�00� is the pressure tensor evaluated in the ref-

erence state, and

�t
�n��0 = 0, n � 0. �19�

Thus, in the ordering scheme developed here, the reference
state is an exact solution to the zeroth order perturbative
equations.

For the standard case describing deviations from the equi-
librium state, the hydrodynamic fields are constant in both
space and time and ��00�=0 so that the balance equations just
reduce to �t

�0��0=0. The left-hand side of the kinetic equation
therefore vanishes leaving 0=J0�r ,v , t � f0� which is indeed
satisfied by the equilibrium distribution. For a granular fluid,
��00��0 and the simplest solution that can be constructed
consists of spatially homogeneous, but time dependent fields
giving

�t
�0�f0�r,v,t;��0�� = J0�r,v,t�f0� �20�

and

�t
�0�n0 = 0,

�t
�0�u0,i = 0,

�t
�0�T0 = − ��00�T0 �21�

so that the distribution depends on time through its depen-
dence on the temperature. The balance equations, together
with the assumption of normality, serve to define the mean-
ing of the left-hand side of Eq. �20� giving

− ��00�T0
�

�T
f0�r,v,t;��0�� = J0�r,v,t�f0� . �22�

Typically, this is solved by assuming a scaling solution of the
form f0�r ,v , t ; ��0��=�(v�m�2 /kBT�t�).

D. The zeroth order Chapman-Enskog solution

As emphasized above, the Chapman-Enskog method is an
expansion in gradients of the deviations of the hydrodynamic
fields from the reference state. Using the ordering developed
above, the zeroth order kinetic equation is

�t
�0�f �0�

„r,v;���r,t�,��0�… + v · ��0�f �0�
„r,v;���r,t�,��0�…

= J0�r,v,t�f0� �23�

and the zeroth order balance equations are

�t
�0�n + u · �n0 + n � · u0 = 0,

�t
�0�ui + u · �u0.i + �mn� j

−1��0�Pij
�0� = 0,
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�t
�0�T + u · �T0 +

2

DnkB
���0� · q�0� + Pij

�0�� ju0,i� = − ��0�T .

�24�

Making use of the balance equations satisfied by the refer-
ence fields, Eq. �18�, this can be written in terms of the
deviations as

�t
�0��n + �u · �n0 + �n � · u0 = 0,

�t
�0��ui + �u · �u0,i + �mn�−1� j

�0�Pij
�0� − �mn0�−1� jPij

�00� = 0,

�t
�0��T + �u · �T0 +

2

DnkB
���0� · q�0� + Pij

�0�� ju0,i�

−
2

Dn0kB
�� · q�00� + Pij

�00�� ju0,i� = − ��0�T + ��00�T0.

�25�

Since the zeroth order distribution is a function of �� but a
functional of the reference fields, the time derivative in Eq.
�23� is evaluated using

�t
�0�f �0� = �



„�t
�0����r,t�…

�

����r,t�
f �0�

+ �

� dr�„�t

�0��0,�r�,t�…
�

��0,�r�,t�
f �0� �26�

and these equations must be solved subject to the additional
boundary condition

lim
��→0

f �0�
„r,v,t;���r,t�,��0�… = f0�r,v,t;��0�� . �27�

There are several important points to be made here. First, it
must be emphasized that the reference fields �0�r , t� and the
deviations ���r , t� are playing different roles in these equa-
tions. The former are fixed and assumed known whereas the
latter are independent variables. The result of a solution of
these equations will be the zeroth order distribution as a
function of the variables ��. For any given physical prob-
lem, the deviations will be determined by solving the balance
equations, Eqs. �25�, subject to appropriate boundary condi-
tions and only then is the distribution completely specified.
Second, nothing is said here about the solution of Eqs.
�23�–�26� which, in general, constitute a complicated func-
tional equation in terms of the reference state variables
�0,�r , t�. The only obvious exceptions, and perhaps the only
practical cases, are when the reference state is either time-
independent, so that �t

�0��0,=0, or spatially homogeneous so
that f �0� is a function, and not a functional, of the reference
fields. The equilibrium state is both, the homogeneous cool-
ing state is a spatially homogeneous state, and time-
independent flow states such as uniform shear flow or
Pouseille flow with thermalizing walls are important ex-
amples of time-independent, spatially inhomogeneous states.
Third, since Eqs. �23� and �24� are the lowest order equations
in a gradient expansion, they are to be solved for arbitrarily
large deviations of the fields, ��. There is no sense in which
the deviations should be considered to be small. The fourth

observation, and perhaps the most important, is that there is
no conceptual connection between the zeroth order distribu-
tion f �0�(v ;���r , t� ,�0

����0�r , t�) and the reference distribu-
tion f0(v ;�0

����0�r , t�) except for the limit given in Eq. �27�.
In particular, it will almost always be the case that

f �0�
„v;���r,t�,�0

����0�r,t�… � f0�v;�0
���
„�0�r,t� + ���r,t�…� .

�28�

A rare exception for which this inequality is reversed is when
the reference state is the equilibrium state. In that case, the
density, temperature, and velocity fields are uniform and the
reference distribution is just a Gaussian

f0�r,v;�0
����0� = �0�v;n0,T0,U0� �29�

and the solution to the zeroth order equations is the local
equilibrium distribution

f �0�
„v;���r,t�,�0

����0�r,t�…

= �0„v;n + �n�r,t�,T + �T�r,t�,U + �U�r,t�…

= f0„v;�0
���
„�0�r,t� + ���r,t�…… . �30�

For steady states, as will be illustrated in the next section, it
is not the case that f �0� is obtained from the steady-state
distribution via a “localization” along the lines of that shown
in Eq. �30�. On the other hand, Eqs. �23� and �24� are the
same whether they are solved for the general field ���r , t� or
for the spatially homogeneous field ���t� with the subse-
quent localization ���t�→���r , t�. Furthermore, these equa-
tions are identical to those one would solve in order to obtain
an exact normal solution to the full kinetic equation, Eq.
�17�, and balance equations, Eqs. �18�, for the fields
�0�r , t�+���t�. In other words, the zeroth order Chapman-
Enskog distribution is the localization of the exact distribu-
tion for homogeneous deviations from the reference state.
Again, only in the case of the equilibrium reference state is it
true that this corresponds to the localization of the reference
state itself.

E. First order Chapman-Enskog

In the following, the equations for the first order terms
will also be needed. Collecting terms in Eq. �17�, the first
order distribution function is found to satisfy

�t
�0�f �1�

„v;���r,t�,��0�… + v · ��0�f �1�
„v;���r,t�,��0�…

= J0�r,v,t�f1� + J1�r,v,t�f0� − ��t
�1�f �0�

„v;���r,t�,��0�…

+ v · ��1�f �0�
„v;���r,t�,��0�…� �31�

and the first order balance equations become

�t
�1��n + u · ��n + n � · �u = 0,

�T
�1��ui + u · ��ui + �mn�−1� j

�1�Pij
�0� + �mn�−1�J

�0�Pij
�1� = 0,

�t
�1��T + u · ��T +

2

DnkB
���1� · q�0� + Pij

�0�� j�ui�

+
2

DnkB
���0� · q�1� + Pij

�1�� ju0,i� = − ��1�T . �32�
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III. APPLICATION TO UNIFORM SHEAR FLOW
OF GRANULAR FLUIDS

Uniform shear flow �USF� is a macroscopic state that is
characterized by a constant density, a uniform temperature,
and a simple shear with the local velocity field given by

ui = aijrj, aij = a�ix� jy , �33�

where a is the constant shear rate. If one assumes that the
pressure tensor, heat flux vector, and cooling rate are also
spatially uniform, the reference-state balance equations, Eqs.
�18�, become

�t
�0�n0 = 0,

�t
�0�u0,i + au0,y�ix = 0,

�t
�0�T0 +

2

Dn0kB
aPxy

�00� = − ��00�T0. �34�

The question of whether or not these assumptions of spatial
homogeneity are true depends on the detailed form of the
collision operator: in Ref. �23� it is shown that only for the
linear velocity profile, Eq. �33�, this assumption is easily
verified for the Enskog kinetic theory �and hence for simpler
approximations to it such as the Boltzmann and BGK theo-
ries�. This linear velocity profile is generated by Lee-
Edwards boundary conditions �24�, which are simply peri-
odic boundary conditions in the local Lagrangian frame. For
elastic gases, ��00�=0 and the temperature grows in time due
to viscous heating and so a steady state is not possible unless
an external �artificial� thermostat is introduced �17�. How-
ever, for inelastic gases, the temperature changes in time due
to the competition between two �opposite� mechanisms: on
the one hand, viscous �shear� heating and on the other hand,
energy dissipation in collisions. A steady state occurs when
both mechanisms cancel each other at which point the bal-
ance equation for temperature becomes

2

Dn0kB
aPxy

�00� = − ��00�T0. �35�

Note that both the pressure tensor and the cooling rate are in
general functions of the two control parameters, the shear
rate and the coefficient of restitution, and the hydrodynamic
variables, the density and the temperature, so that this rela-
tion fixes any one of these in terms of the other three: for
example, it could be viewed as giving the steady state tem-
perature as a function of the other variables.

At a microscopic level, the one-body distribution for USF
will clearly be inhomogeneous since Eqs. �5� and �33� imply
that the steady state distribution must give

ayx̂ =
1

n0
� dvvf0�r,v� . �36�

However, it can be shown, at least up to the Enskog theory
�23�, that for the Lee-Edwards boundary conditions, the state
of USF possesses a modified translational invariance
whereby the steady state distribution, when expressed in
terms of the local rest-frame velocities Vi=vi−aijrj, does not

have any explicit dependence on position. In terms of these
variables, and assuming a steady state, the kinetic equation
becomes

− aVy
�

�Vx
f�V� = J�V�f , f� . �37�

The solution of this equation has been considered in some
detail for the BGK-type models �16–19�, the Boltzmann
equation �13�, and the Enskog equation �25,26,23�.

A. The model kinetic theory

Here, for simplicity, attention will be restricted to a par-
ticularly simple kinetic theory which nevertheless gives real-
istic results that can be compared to experiment. The kinetic
theory used is the kinetic model of Brey, Dufty, and Santos
�18�, which is a relaxation type model where the operator
J�f , f� is approximated as

J�f , f� → − �*�������f − �0� +
1

2
�*������

�

�v
· �Cf� .

�38�

The right-hand side involves the peculiar velocity C=v−u
=V−�u and the local equilibrium distribution, Eq. �1�. The
parameters in this relaxation approximation are taken so as to
give agreement with the results from the Boltzmann theory
of the homogeneous cooling state as discussed in Ref. �18�.
Defining the collision rate for elastic hard spheres in the
Boltzmann approximation as

���� =
8��D−2�/2

�D + 2���D/2�
n�D��kBT

m�2 , �39�

the correction for the effect of the inelasticity is chosen to
reproduce the Navier-Stokes shear viscosity coefficient of an
inelastic gas of hard spheres in the Boltzmann approximation
�27,12� giving

�*�� =
1

4D
�1 + ���D − 1� + D + 1� . �40�

The second term in Eq. �38� accounts for the collisional cool-
ing and the coefficient is chosen so as to give the same cool-
ing rate for the homogeneous cooling state as the Boltzmann
kinetic theory �27,12�,

�*�� =
D + 2

4D
�1 − 2� . �41�

In this case, the expressions for the pressure tensor, heat-flux
vector, and cooling rate take particularly simple forms typi-
cal of the Boltzmann description �4�

Pij = m� dCCiCjf�r,C,t� ,

qi =
1

2
m� dCCiC

2f�r,C,t� , �42�

while the cooling rate can be calculated directly from Eqs.
�38� and �8� with the result ����=�����*��.
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B. The steady state

Before proceeding with the Chapman-Enskog solution of
the kinetic equation, it is useful to describe the steady state
for which the distribution satisfies Eq. �37� which now be-
comes

− aVy
�

�Vx
f�V� = − �*�����0��f − �0�

+
1

2
�*�����0�

�

�V
· �Vf� . �43�

The balance equations reduce to

2aPxy
ss = − �*������Dn0kBT0. �44�

An equation for the pressure tensor is obtained by multiply-
ing Eq. �43� through by mViVj and integrating giving

aPiy
ss� jx + aPjy

ss�ix = − �*�����0��Pij
ss − n0kBT0�ij�

− �*�����0�Pij
ss.

This set of algebraic equations is easily solved giving the
only nonzero components of the pressure tensor as

Pii
ss =

�*�� + �ixD�*��
�*�� + �*��

n0kBT0,

Pxy
ss = −

ass
*

�*�� + �*��
Pyy , �45�

where ass
* =ass /���0� satisfies the steady state condition, Eq.

�44�

ass
*2�*��

��*�� + �*���2 =
D

2
�*�� . �46�

For fixed control parameters,  and a, this is a relation con-
straining the state variables n0 and T0. The steady state dis-
tribution can be given explicitly, see, e.g., �28�.

C. Zeroth order Chapman-Enskog

Since the only spatially varying reference field is the ve-
locity and since it is linear in the spatial coordinate, the ze-
roth order kinetic equation, Eq. �23�, becomes

�t
�0�f �0� + v · ���0�u0i�

�

�u0i
f �0�

= − �����f �0� − �0� +
1

2
�*������

�

�v
· �Cf �0�� �47�

or, writing the derivative on the left in terms of the peculiar
velocity,

�t
�0�f �0� + vy�y

0f �0� − avy
�

�Cx
f �0�

= − �����f − �0� +
1

2
�*������

�

�v
· �Cf �0�� . �48�

Here, the second term on the left accounts for any explicit

dependence of the distribution on the coordinate y, aside
from the implicit dependence coming from C. Since it is a
zero order derivative, it does not act on the deviations ��. In
terms of the peculiar velocity, this becomes

�t
�0�f �0� + �Cy + �uy��y

0f �0� − aCy
�

�Cx
f �0� − a�uy

�

�Cx
f �0�

= − �����f − �0� +
1

2
�*������

�

�C
· �Cf �0�� . �49�

The first term on the left is evaluated using Eq. �26� and the
zeroth order balance equations

�t
�0�n = 0,

�t
�0�ui + a�uy�ix = 0,

�t
�0�T +

2

DnkB
aPxy

�0� = − �*������T , �50�

and the assumption of normality

�t
�0�f �0� = ��t

�0��n�� �

��n
f �0�� + ��t

�0��T�� �

��T
f �0��

+ ��t
�0��ui�� �

��ui
f �0��

to give

�− �*������T −
2

DnkB
aPxy

�0�� �

�T
f �0� − aCy

�

�Cx
f �0�

− a�uy� �

�Cx
f �0� +

�

��ux
f �0��

= − �*�������f �0� − �0� +
1

2
�*������

�

�C
· �Cf �0�� ,

�51�

where the temperature derivative is understood to be evalu-
ated at constant density. Here, the second term on the left in
Eq. �49� has been dropped as neither Eq. �49� nor the balance
equations contain explicit reference to the velocity field u0,
and so no explicit dependence on the coordinate y, thus jus-
tifying the assumption that such dependence does not occur
in f �0�. One can also assume that f �0� depends on �ui only
through the peculiar velocity, since in that case the term pro-
portional to �uy vanishes as well and there is no other ex-
plicit dependence on �uy.

Equation �51� is closed once the pressure tensor is speci-
fied. Since the primary goal here is to develop the transport
equations for deviations from the reference state, attention
will be focused on the determination of the pressure tensor
and the heat flux vector. It is a feature of the simple kinetic
model used here that these can be calculated without deter-
mining the explicit form of the distribution.

1. The zeroth order pressure tensor

An equation for the pressure tensor can be obtained by
multiplying this equation through by mCiCj and integrating
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over velocities. Using the definition given in Eq. �42�,

�− �*������T −
2

DnkB
aPxy

�0�� �

�T
Pij

�0� + a�ixPjy
�0� + a� jxPiy

�0�

= − �*�������Pij
�0� − �ijnkBT� − �*������Pij

�0�, �52�

and of course there is the constraint that by definition
Tr�P�=DnkBT. It is interesting to observe that Eqs. �50�–�52�
are identical with their steady state counterparts when the
steady state condition, ��0�T=2/DnkBaPxy

�0�, is fulfilled. How-
ever, here the solution of these equations is needed for arbi-
trary values of �T, �n, and �u. Another point of interest is
that these equations are local in the deviations �� so that
they are exactly the same equations as describe spatially ho-
mogeneous deviations from the reference state. As men-
tioned above, this is the meaning of the zeroth order solution
to the Chapman-Enskog expansion: it is the exact solution to
the problem of uniform deviations from the reference state. It
is this exact solution which is “localized” to give the zeroth
order Chapman-Enskog approximation and not the reference
distribution, f0, except in the rare cases, such as equilibrium,
when they coincide.

To complete the specification of the distribution, Eqs. �51�
and �52� must be supplemented by boundary conditions. The
relevant dimensionless quantity characterizing the strength
of the nonequilibrium state is the dimensionless shear rate
defined as

a* 	 a/� = a
�D + 2���D/2�
8��D−1�/2n�D �m�2

kBT
. �53�

It is clear that for a uniform system, the dimensionless shear
rate becomes smaller as the temperature rises so that we
expect that in the limit of infinite temperature, the system
will behave as an inelastic gas without any shear, i.e., in the
homogeneous cooling state, giving the boundary condition

lim
T→�

1

nkBT
Pij = �ij , �54�

and in this limit, the distribution must go to the homoge-
neous cooling state distribution. These boundary conditions
can be implemented equivalently by rewriting Eqs. �60� in
terms of the inverse temperature, or more physically the vari-
able a*, and the dimensionless pressure tensor Pij

�*�

=1/nkBTPij
�0� giving

�1

2
�*�� +

1

D
a*Pxy

�*��a* �

�a* Pij
�*�

=
2

D
a*Pxy

�*�Pij
�*� − a*�ixPjy

�*� − a*� jxPiy
�*� − �*���Pij

�*� − �ij�

�55�

and writing f �0��C ;��=n�m /2�kBT�D/2g��m /kBTC ;a*�

��*�� +
2

D
a*Pxy

�*��a* �

�a*g +
1

D
a*Pxy

�*�Ci
�

�Ci
g + a*Pxy

�*�g

− a*Cy
�

�Cx
g = − �*���g − exp�− mC2/kBT�� , �56�

with boundary condition lima*→0Pij
�*�=�ij and lima*→0g

=exp�−mC2 /kBT�. For practical calculations, it is more con-
venient to introduce a fictitious time variable, s, and to ex-
press these equations as

da*

ds
=

1

2
a*�*�� +

1

D
a*2Pxy

�*�,

�

�s
Pij

�0� =
2

D
a*Pxy

�*�Pij
�*� − a*�ixPjy

�*� − a*� jxPiy
�*�

− �*���Pij
�*� − �ij� �57�

where the boundary condition is then Pij
�*��s=0�=�ij, and

a*�s=0�=0. The distribution then satisfies

�

�s
g = −

1

D
a*Pxy

�*�Ci
�

�Ci
g − a*Pxy

�*�g + a*Cy
�

�Cx
g

− �*���g − exp�− mC2/kBT�� �58�

with lims→0g=exp�−mC2 /kBT�. These are to be solved si-
multaneously to give Pij

�*��s�, a*�s�, and f �0��s� from which
the desired curves Pij

�*��a*� and f �0��a*� are obtained.
Physically, if the gas starts at a very high temperature, it

would be expected to cool until it reached the steady state. It
is easy to see that the right-hand sides of Eqs. �57� do in fact
vanish in the steady state so that the steady state represents a
critical point of this system of differential equations �29�. In
order to fully specify the curve Pij�T� and the distribution f �0�

it is necessary to integrate as well from a temperature below
the steady state temperature. Clearly, in the case of zero tem-
perature, one expects that the pressure tensor goes to zero
since this corresponds to the physical situation in which the
atoms stream at exactly the velocities predicted by their po-
sitions and the macroscopic flow field. �Note that if the at-
oms have finite size, this could still lead to collisions. How-
ever, the BGK kinetic theory used here is properly
understood as an approximation to the Boltzmann theory ap-
propriate for a low density gas in which the finite size of the
grains is of no importance.� Thus the expectation is that the
zero-temperature limit will give

lim
T→0

Pij
�0� = 0. �59�

Then, in terms of fictitious time parameters, one has

dT

ds
= − �*������T −

2

D
aTPxy

�*�,

�

�s
Pij

�*� = a
2

D
Pxy

�*�Pij
�*� − a�ixPjy

�*� − a� jxPiy
�*�

− �*�������Pij
�*� − �ij� �60�

and for the distribution
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�

�s
f �0� = aCy

�

�Cx
f �0� − �*�������f �0� − �0�

+
1

2
�*������

�

�C
· �Cf �0�� . �61�

A final point is that the solution of these equations requires
more than the boundary condition Pij

�0��s=0�=0 since evalu-
ation of the right-hand side of Eq. �60� requires a statement
about Pij

�*��s=0� as well. A straightforward series solution of
Eq. �52� in the vicinity of T=0 gives Pxy

* �a*−1/3 and Pii
*

�a*−2/3 so that the correct boundary condition here is
Pij

�*��s=0�=0. The solution of these equations can then be
performed as discussed in Ref. �14� with the boundary con-
ditions given here.

It will also prove useful below to know the behavior of
the pressure tensor near the steady state. This is obtained by
making a series solution to Eq. �55� in the variable �a*

−ass
* � where ass

* is the reduced shear in the steady state. De-
tails are given in Appendix A and the result is that

Pij
�0� = Pij

ss�1 + Aij
* ��� a*

ass
* − 1� + ¯ � , �62�

with the coefficients

Axy
* �� = − 2

��� + �*��
�*��

,

�1 − �ix�Aii
*�� = − 2� �*�� + �*��

��� + �*�� +
1

2
�*���1 − �ix� ,

Axx
* �� = − 2D

���� +
1

D
�*�� +

1

2
�*�����*�� + �*���

���� + �*�� +
1

2
�*�����*�� + D�*���

,

�63�

where ��� is the real root of

4�3 + 8��*�� + �*����2 + �4�*2�� + 14�*���*��

+ 7�*2���� + �*���2�*2�� − �*���*�� − 2�*2���

= 0. �64�

2. Higher order moments: the zeroth order heat flux vector

Determination of the heat flux vector requires consider-
ation of the full tensor of third order moments. Since fourth
order moments will also be needed later, it is easiest to con-
sider the equations for the general Nth order moment. Defin-
ing the s order contribution to the Nth moment as

Mi1¯iN
�s� �r,t� = m� dvCi1

¯ CiN
f �s��r,C,t� , �65�

the goal here will be to give expressions for the zeroth order
contribution, Mi1¯iN

�0� �r , t�. To simplify the equations, a more

compact notation will be used for the indices whereby a col-
lection of numbered indices, such as i1¯ iN, will be written
more compactly as IN so that capital letters denote collec-
tions of indices and the subscript on the capital indicates the
number of indices in the collection. Some examples of this
are

MIN

�0� = Mi1¯iN
�0� ,

MI2

�0� = Mi1i2
�0� ,

MI2y
�0� = Mi1i2y

�0� . �66�

In terms of the general moments, the heat flux vector is

qi
�0��r,t� =

1

2�
j

Mijj
�0��r,t� =

1

2
Mijj

�0��r,t� , �67�

where the second equality introduces the Einstein summation
convention whereby repeated indices are summed. The pres-
sure tensor is just the second moment Pij

�0�=Mij
�0�. The local

equilibrium moments are easily shown to be zero for odd N
while the result for even N is

MIN

�le� = mn�2kBT

m
�N/2

2N/2

��N + 1

2
���N + 2

2
�

����N�

�PIN
�i1i2

�i3i4
¯ �iN−1iN

, �68�

where the operator Pijk¯ indicates the sum over distinct per-
mutations of the indices ijk¯ and has no effect on any other
indices. �For example, PI4

�i1i2
�i3i4

=�i1i2
�i3i4

+�i1i3
�i2i4

+�i1i4
�i2i3

�. An equation for the general Nth order moment
can be obtained from Eq. �47� with the result

�− �*�� −
2

D
a*Pxy

�*��T
�

�T
MIN

�0� + ��*�� +
N

2
�*���MIN

�0�

+ a*PIN
�xiN

MIN−1y
�0� = �*��MIN

�le�. �69�

Writing MIN

�0�=mn�2kBT /m�N/2MIN

* gives

− ��*�� +
2

D
a*Pxy

�*��T
�

�T
MIN

* + ��*�� −
N

D
a*Pxy

�*��MIN

*

+ a*PIN
�xiN

MIN−1y
* = �*��MIN

�le*�. �70�

Notice that the moments are completely decoupled order by
order in N. Since the source on the right vanishes for odd N
it is natural to assume that MIN

* =0 for odd N. This is certainly
true for temperatures above the steady state temperature
since the appropriate boundary condition in this case, based

on the discussion above, is that limT→�MIN

* =MIN

�le*�=0. In the

opposite limit, T→0, as mentioned above, one has that Pxy
*

�a*−1/3�T1/6 and there are two cases to consider depending
on whether or not the third term on the left contributes. If it
does, i.e., if one or more indices is equal to x, then a series
solution near T=0 gives MIN

* �a*−1�T1/2 while if no index
is equal to x then MIN

* �a*−2/3�T1/3 giving in both cases the
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boundary condition limT→0MIN

* =0. In particular, this shows
that the odd moments vanish for all temperatures. From this,
it immediately follows that

qi
�0��r,t� = 0. �71�

D. First order Chapman-Enskog: General formalism

The equation for the first order distribution, Eq. �31�, be-
comes

�t
�0�f �1� + avy

�

�u0x
f �1� = − ����f �1� +

1

2
�*������

�

�v
· �Cf �1��

− ��t
�1�f �0� + v · �1f �0�� , �72�

and the operator �t
�1� is defined via the corresponding balance

equations which are now

�t
�1��n + u · ��n + n � · �u = 0,

�t
�1��ui + u · ��ui + �mn�−1� j

�1�Pij
�0� + �mn�−1�y

�0�Piy
�1� = 0,

�t
�1��T + u · ��T +

2

DnkB
�Pij

�0�� j�ui + ��0� · q�1� + aPxy
�1�� = 0.

�73�

Writing the kinetic equation in the form

�t
�0�f �1� + a

�

�u0x
vyf �1� + �*������f �1�

−
1

2
�*������

�

�v
· �Cf �1�� = − ��t

�1�n + ul�l
1n�

�

�n
f �0�

− ��t
�1�T + ul�l

1T�
�

�T
f �0� − ��t

�1��uj + ul�l
1�uj�

�

��uj
f �0�

− ��l
1ul�f �0� − �l

1Clf
�0�, �74�

equations for the Nth moment can be obtained by multiply-
ing through by Ci1

¯CiN
and integrating over velocity. The

first two terms on the left contribute

� Ci1
¯ CiN��t

�0�f �1� + a
�

�u0x
vyf �1��dv

= �t
�0�MIN

�1� + PIN
��t

�0��uiN
�MIN−1

�1� + a
�

�u0x
�MINy

�1� + �uyMIN

�1��

+ aPIN
�xiN

�MIN−1y
�1� + �uyMIN−1

�1� �

= �t
�0�MIN

�1� + a
�

�u0x
�MINy

�1� + �uyMIN

�1�� + aPIN
�xiN

MIN−1y
�1� ,

�75�

where the last line follows from using the zeroth order bal-
ance equation �t

�0��uiN
=−a�iNx�uy. The evaluation of the

right-hand side is straightforward with the only difficult term
being

� Ci1
¯ CiN� �

��uj
f �0��dv =

�

��uj
MIN

�0� + PIN
�iNjMIN−1

�0� ,

�76�

and from Eq. �70� it is clear that MIN

�0� is independent of �uj

so that the first term on the right vanishes. Thus

�t
�0�MIN

�1� + a
�

�u0x
�MINy

�1� + �uyMIN

�1�� + aPIN
�xiN

MIN−1y
�1�

+ ��*�� +
N

2
�*�������MIN

�1�

= − ��t
�1�n + ul�l

1n�
�

�n
MIN

�0� − ��t
�1�T + ul�l

1T�
�

�T
MIN

�0�

− ��t
�1��uj + ul�l

1�uj�PIN
�iNjMIN−1

�0� − ��l
1ul�MIN

�0�

− PIN
��l

1uiN
�MIN−1l

�0� − �l
1MINl

�0� . �77�

Superficially, it appears that the right-hand side depends ex-
plicitly on the reference field, since ul=u0,l+�ul, which
would in turn generate an explicit dependence of the mo-
ments on the y coordinate. However, when the balance equa-
tions are used to eliminate �t

�1� this becomes

�t
�0�MIN

�1� + a
�

�u0x
�MINy

�1� + �uyMIN

�1�� + aPIN
�xiN

MIN−1y
�1�

+ ��*�� +
N

2
�*�������MIN

�1�

= ��l
�1��ul�n

�

�n
MIN

�0� +
2

DnkB
�Mlk

�0��l
�1��uk + aMxy

�1��
�

�T
MIN

�0�

+
1

mn
PIN

��l
�1�PliN

�0� + �y
�0�PyiN

�1� �MIN−1

�0� − ��l
1�ul�MIN

�0�

− PIN
��l

1�uiN
�MIN−1l

�0� − �l
1MINl

�0� . �78�

Then, assuming that the first order moments are independent
of the reference field, u0, gives

�t
�0�MIN

�1� + aPIN
�xiN

MIN−1y
�1� + ��*�� +

N

2
�*�������MIN

�1�

− � 2a

DnkB

�

�T
MIN

�0��Mxy
�1� = ��ab�n

�

�n
MIN

�0� − MIN

�0��
+

2

DnkB
Pab

�0� �

�T
MIN

�0� − PIN
�biN

MIN−1a
�0� ���a

�1��ub�

+ � 1

mn
PIN

� �

��n
PliN

�0��MIN−1

�0� −
�

��n
MINl

�0����l
�1��n�

+ � 1

mn
PIN

� �

��T
PliN

�0��MIN−1

�0� −
�

��T
MINl

�0����l
�1��T� ,

�79�

which is consistent since no factors of u0 appear and since
the zeroth order moments are known to be independent of
the reference velocity field.
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The moment equations are linear in gradients in the de-
viation fields, so generalized transport coefficients are intro-
duced via the definition

MIN

�1� = − �INab
���a

�rb
= − �INa

��n

�ra
− �INa

��T

�ra
− �INab

��ua

�rb
,

�80�

where the transport coefficients for different values of N
have the same name but can always be distinguished by the
number of indices they carry. The zeroth order time deriva-
tive is evaluated using

�t
�0��INab

���a

�rb
= ��t

�0��INab�
���a

�rb
+ �INab�t

�0����a

�rb

= ���t
�0�T�

��INab

�T
+ ��t

�0��uj�
��INab

��uj
� ���a

�rb

+ �INab
�

�rb
��t

�0���a�

= ��t
�0�T�

��INab

�T

���a

�rb
+ �INab

���c

�rb

���t
�0���a�
���c

= ���t
�0�T�

��INab

�T
+ �INcb

���t
�0���c�

���a
� ���a

�rb
,

�81�

where the third line follows from �a� the fact that the trans-
port coefficients will have no explicit dependence on the
velocity field, as may be verified from the structure of Eq.
�79�, and �b� the fact that the gradient here is a first order
gradient �1 so that it only contributes via gradients of the
deviations of the fields thus giving the last term on the right.
Since the fields are independent variables, the coefficients of
the various terms ���b /�ra must vanish independently. For
the coefficients of the velocity gradients, this gives

��t
�0�T�

�

�T
�INab + �INcb

���t
�0��uc�

��ua
+ aPIN

�xiN
�IN−1yab

+ ��*�� +
N

2
�*��������INab − � 2a

DnkB

�

�T
MIN

�0���xyab

= − �ab�n
�

�n
MIN

�0� − MIN

�0�� −
2

DnkB
Mab

�0� �

�T
MIN

�0�

+ PIN
�biN

MIN−1a
�0� . �82�

The vanishing of the coefficients of the density gradients
gives

��t
�0�T�

�

�T
�INa + �INa

���t
�0�T�
�n

+ aPIN
�xiN

�IN−1ya
N

+ ��*�� +
N

2
�*��������INa − � 2a

DnkB

�

�T
MIN

�0���xya

= −
1

mn
PIN

� �

��n
PaiN

�0� �MIN−1

�0� +
�

��n
MINa

�0� , �83�

while the vanishing of the coefficient of the temperature gra-
dient gives

��t
�0�T�

�

�T
�INa +

���t
�0�T�
�T

�INa + aPIN
�xiN

�IN−1ya
N

+ ��*�� +
N

2
�*��������INa − � 2a

DnkB

�

�T
MIN

�0���xya

= −
1

mn
PIN

� �

��T
PaiN

�0� �MIN−1

�0� +
�

��T
MINa

�0� . �84�

Notice that for even moments, the source terms for the den-
sity and temperature transport coefficients all vanish �as they
involve odd zeroth order moments� and it is easy to verify
that the boundary conditions are consistent with �INa=�INa

=0 and only the velocity gradients contribute. For odd values
of N, the opposite is true and �INab=0 while the others are in
general nonzero.

E. Navier-Stokes transport

1. The first order pressure tensor

Specializing to the case N=2 gives the transport coeffi-
cients appearing in the pressure tensor

PIN

�1� = − �INab
��ua

�rb
�85�

where the generalized viscosity satisfies

��t
�0�T�

�

�T
�ijab − a�ijxb�ay + a�xi� jyab + a�xj�iyab

+ „�*�� + �*��…�����ijab − � 2a

DnkB

�

�T
Pij

�0���xyab

= − �ab�n
�

�n
Pij

�0� − Pij
�0�� −

2

DnkB
Pab

�0� �

�T
Pij

�0�

+ �biPja
�0� + �bjPia

�0�. �86�

2. First order third moments and the heat flux vector

For the third moments, the contribution of density gradi-
ents to the heat flux is well-known in the theory of granular
fluids and the transport coefficient is here the solution of

��t
�0�T�

�

�T
�ijka +

���t
�0�T�
�n

�ijka + ��*�� +
3

2
�*��������ijka

+ a�xk�ijya + a�xi�kjya + a�xj�ikya

= −
1

mn
� �

�n
Pak

�0��Pij
�0� −

1

mn
� �

�n
Pai

�0��Pkj
�0�

−
1

mn
� �

�n
Paj

�0��Pik
�0� +

�

�n
Mijka

�0� , �87�

and the generalized thermal conductivity is determined from
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��t
�0�T�

�

�T
�ijka +

���t
�0�T�
�T

�ijka + ��*�� +
3

2
�*��������ijka

+ a�xk�ijya + a�xi�kjya + a�xj�ikya

= −
1

mn
� �

�T
Pak

�0��Pij
�0� −

1

mn
� �

�T
Pai

�0��Pkj
�0�

−
1

mn
� �

�T
Paj

�0��Pik
�0� +

�

�T
Mijka

�0� . �88�

Note that both of these require knowledge of the zeroth order
fourth velocity moment Mijka

�0� . The heat flux vector is

qi
�1� = − �̄ia

��n

�ra
− �̄ia

��T

�ra
�89�

where

�̄ia = �ij ja,

�̄ia = �ij ja. �90�

F. The second order transport equations

In this section, the results obtained so far are put together
so as to give the Navier-Stokes equations for deviations from
the steady state. The Navier-Stokes equations result from the
sum of the balance equations. To first order, this takes the
form

�tn + u · ��n + n � · �u = 0,

�tui + u · ��ui + a�ix�uy + �mn�−1� j
�1�Pij

�0� = 0,

�tT + u · ��T +
2

DnkB
�Pij

�0�� j�ui + aPxy
�0� + aPxy

�1��

= − �*������T , �91�

where �t=�t
�0�+�t

�1�. By analogy with the analysis of an equi-
librium system, these will be termed the Euler approxima-
tion. Summing to second order to get the Navier-Stokes ap-
proximation gives

�tn + u · ��n + n � · �u = 0,

�tui + u · ��ui + a�ix�uy + �mn�−1� j
�1�Pij

�0� + �mn�−1�y
�1�Piy

�1�

+ �mn�−1� j
�0�Pij

�2� = 0,

�tT + u · ��T +
2

DnkB
���1� · q�1� + ��0� · q�2� + Pij

�0�� j�ui

+ Pij
�1�� j�ui + aPxy

�0� + aPxy
�1� + aPxy

�2�� = − �*������T ,

�92�

where now �t=�t
�0�+�t

�1�+�t
�2� but this expression is problem-

atic. Based on the results so far, it seems reasonable to expect
that � j

�0�Pij
�2�=��0� ·q�2�=0. However, to consistently write the

equations to third order requires knowledge of Pxy
�2� which is

not available without extending the solution of the kinetic
equation to third order. The reason this problem arises here,
and not in the analysis about equilibrium, is that the shear
rate, a, arises from a gradient of the reference field. In the
usual analysis, such a term would be first order and aPxy

�2�

= ��iu0j�Pij
�2� would be of third order and therefore neglected

here. This is unfortunate and shows that this method of
analysis does not completely supplant the need to go beyond
the second order solution in order to study shear flow. How-
ever, this problem is not unique. In fact, in calculations of the
transport coefficients for the homogeneous cooling state of a
granular gas, a similar problem occurs in the calculation of
the cooling rate: the true Navier-Stokes expression requires
going to third order in the solution of the kinetic equation
�30,12�. �This is because the source does not appear under a
gradient, as can be seen in the equations above.� This sug-
gests that the same type of approximation be accepted here,
namely that the term aPxy

�2� is neglected, so that the total
pressure tensor and heat flux vectors are

Pij = Pij
�0� + Pij

�1�,

qi = qi
�0� + qi

�1� �93�

and the transport equations can be written as

�tn + � · �nu� = 0,

�tui + u · �ui + �mn�−1� jPij = 0,

�tT + u · �T +
2

DnkB
�� · q + Pij� jui� = − �*������T ,

�94�

which is the expected form of the balance equations. The
total fluxes are given terms of the generalized transport co-
efficients

Pij = Pij
�0� − �ijab

��ua

�rb
,

qi = − �ij ja
��n

�ra
− �ij ja

��T

�ra
. �95�

G. Linearized second order transport

Some simplification occurs if attention is restricted to lin-
ear deviations from the steady state. In particular, since the
dissipitive contributions to the fluxes are already of first or-
der in the deviations from the steady state, see Eq. �95�, the
transport coefficients are only needed to lowest, i.e., zero,
order in the deviations. The defining expressions for the
transport coefficients therefore simplify since the factor �t

�0�T
occuring in Eqs. �86� and �87� is at least of first order in the
deviations from the steady state �since it vanishes in the
steady state� thus implying that the temperature derivative
can be neglected. The differential equations for the transport
coefficients thus become coupled algebraic equations greatly
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simplifying the determination of the transport coefficients.
Taking this into account, the total fluxes are

Pij = Pij
�ss� + � �Pij

�0�

��n
�

ss
�n + � �Pij

�0�

��T
�

ss
�T − �ijab

ss ��ua

�rb
,

qi = − �̄ia
ss ��n

�ra
− �̄ia

ss ��T

�ra
, �96�

where the superscript on the transport coefficients, and sub-
script on the derivatives, indicate that they are evaluated to
zeroth order in the deviations from the steady state 
�0�, e.g.,

� �Pij
�0�

��n
�

ss
	 lim

�→�0

�Pij
�0��n,T;a�

��n
= lim

n→n0

�Pij
�0��n,T0;a�

��n
,

� �Pij
�0�

��T
�

ss
	 lim

�→�0

�Pij
�0��n,T;a�

��T
= lim

T→T0

�Pij
�0��n0,T;a�

��n
.

�97�

The equation for the viscosity becomes

− ass
* �ijxb

ss �ay + ass
* �xi� jyab

ss + ass
* �xj�iyab

ss + ��*�� + �*����ijab
ss

−
2ass

*

Dn0kB
� �

�T
Pij

�0��
ss

�xyab
ss

= − �−1��0��ab�n0� �

�n
Pij

�0��
ss

− Pij
�ss��

−
2�−1��0�
Dn0kB

Pab
�ss�� �

�T
Pij

�0��
ss

+ �−1��0���biPja
�ss� + �bjPia

�ss�� , �98�

where ass
* was defined in Eq. �46�. The generalized heat con-

ductivities will be given by the simplified equations

�−1��0�� ���t
�0�T�
�n

�
ss

�ijka
ss + ��*�� +

3

2
�*����ijka

ss

+ ass
* Pijk�xk�ijya

ss

= −
�−1��0�

mn0
Pijk� �

�n
Pak

�0��
ss

Pij
�ss� + �−1��0�� �

�n
Mijka

�0� �
ss

�99�

and

�−1��0�� ���t
�0�T�
�T

�
ss

�ijka
ss + ��*�� +

3

2
�*����ijka

ss

+ ass
* Pijk�xk�ijya

ss

= −
�−1��0�

mn0
Pijk� �

�T
Pak

�0��
ss

Pij
�ss� + �−1��0�� �

�T
Mijka

�0� �
ss

.

�100�

In these equations, the hydrodynamic variables �0 must sat-
isfy the steady state balance condition, Eq. �46�. The deriva-
tives of the pressure tensor and fourth order moment tensor,
Mijka

�0� , in the steady state are given explicitly in Appendix A
and the explicit solution of Eqs. �98�–�100� are given in Ap-

pendix B. The linearized transport equations become

�t�n + ay
�

�x
�n + n0 � · �u = 0,

�t�ui + ay
�

�x
�ui + a�uy�ix + �mn0�−1

��� �Pij
�0�

�n
�

ss

��n

�rj
+ � �Pij

�0�

�T
�

ss

��T

�rj
+ �ijab

ss �2�ua

�rj�rb
� = 0,

�t�T + ay
�

�x
�T +

2

Dn0kB
��̄ia

ss �2�n

�ri�ra
+ �̄ia

ss �2�T

�ri�ra
+ Pij

�ss���ui

�rj

+ a�xyab
ss ��ua

�rb
� +

2a

Dn0
2kB

�n0� �Pxy
�0�

��n
�

ss
− Pxy

�ss���n

+
2a

Dn0kB
� �Pxy

�0�

��T
�

ss
�T

= −
3

2
�*�����0��T − �*�����0�T0

�n

n0
, �101�

where the fact that �����nT1/2 has been used. These equa-
tions have recently been used by Garzó to study the stability
of the granular fluid under uniform shear flow �15�.

IV. CONCLUSIONS

In this paper, the extension of the Chapman-Enskog
method to arbitrary reference states has been presented. One
of the key ideas is the separation of the gradient operator into
“zeroth” and “first” order operators that help to organize the
expansion. It is also important that the zeroth order distribu-
tion be recognized as corresponding to the exact distribution
for arbitrary uniform deviations of all hydrodynamic fields
from the reference state. This distribution does not in general
have anything to do with the distribution in the reference
state, except in the very special case that the reference state
itself is spatially uniform.

The method was illustrated by application to the paradig-
matic nonuniform system of a fluid undergoing uniform
shear flow. In particular, the fluid was chosen to be a granular
fluid which therefore admits of a steady state. The analysis
was based on a particularly simple kinetic theory in order to
allow for illustration of the general concepts without the
technical complications involved in, e.g., using the Boltz-
mann equation. Nevertheless, it should be emphasized that
the difference between the present calculation and that using
the Boltzmann equation would be no greater than in the case
of an equilibrium fluid. The main difference is that with the
simplified kinetic theory, it is possible to obtain closed equa-
tions for the velocity moments without having to explicitly
solve for the distribution. When solving the Boltzmann equa-
tion, the moment equations are not closed and it is necessary
to resort to expansions in orthogonal polynomials. In that
case, the calculation is usually organized somewhat differ-
ently: attention is focused on solving directly for the distri-
bution but this is only a technical point. �In fact, Chapman
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originally developed his version of the Chapman-Enskog
method using Maxwell’s moment equations while Enskog
based his on the Boltzmann equation �4�. The methods are of
course equivalent.�

It is interesting to compare the hydrodynamic equations
derived here to the “standard” equations for fluctuations
about a uniform granular fluid. As might be expected, the
hydrodynamic equations describing fluctuations about the
state of uniform shear flow are more complex in some ways
than are the usual Navier-Stokes equations for a granular
fluid, but the similarities with the simpler case are perhaps
more surprising. The complexity arises from the fact that the
transport coefficients do not have the simple spatial symme-
tries present in the homogeneous fluid where, e.g., there is a
single thermal conductivity rather than the vector quantity
that occurs here. However, just as in the homogeneous sys-
tem, the heat flux vector still only couples to density and
temperature gradients and the pressure tensor to velocity gra-
dients so that the hydrodynamics equations, Eqs. �94�, have
the same structure as the Navier-Stokes equations for the
homogeneous system.

An additional complication in the general analysis pre-
sented here is that the zeroth order pressure tensor and the
transport coefficients are obtained as the solution to partial
differential equations in the temperature rather than as simple
algebraic functions. This requires that appropriate boundary
conditions be supplied which will, in general, depend on the
particular problem being solved. Here, in the high-
temperature limit, the nonequilibrium effects are of no im-
portance and the appropriate boundary condition on all quan-
tities is that they approach their equilibrium values.
Boundary conditions must also be given at low temperature
as the two domains are separated by the steady state which
represents a critical point. At low temperatures, there are no
collisions and no deviations from the macroscopic state so
that all velocity moments go to zero thus giving the neces-
sary boundary conditions. A particularly simple case occurs
when the hydrodynamic equations are linearized about the
reference state as would be appropriate for a linear stability
analysis. Then, the transport properties are obtained as the
solution to simple algebraic equations. The solutions of those
equations have been explicitly formulated in Appendix B. It
is to be hoped that the existence of these expressions will
lead to new empirical work, either experimental or computer
simulation, to test these results.

A particular simplifying feature of uniform shear flow is
that the flow field has a constant first gradient and, as a
result, the moments do not explicitly depend on the flow
field. This will not be true for more complex, nonlinear flow
fields. However, the application of the methods discussed in
Sec. II should make possible an analysis similar to that given
here for the simple case of uniform shear flow.
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APPENDIX A: DERIVATIVES OF THE ZEROTH ORDER
MOMENTS IN THE STEADY STATE

1. The pressure

Recall that in the steady state

Pii
*ss =

�*�� + �ixD�*��
�*�� + �*��

,

Pxy
*ss = −

ass
* �*��

��*�� + �*���2 , �A1�

and the explicit form of the steady state condition, Eq. �44�
giving the value of the reduced shear in the steady state, ass

* ,
is

ass
*2�*��

��*�� + �*���2 =
D

2
�*�� . �A2�

Assume that the stresses are analytic in a* so that near the
singularity

Pij
* = Pii

*ss + Aij
* �a* − ass

* � + ¯ . �A3�

They satisfy Eq. �55�,

�1

2
�*�� +

1

D
a*Pxy

* �a* �

�a* Pij
*

=
2

D
a*Pxy

* Pij
* − a*�ixPjy

* − a*� jxPiy
* − �*���Pij

* − �ij� .

�A4�

Substituting Eq. �A3� into this and equating terms order by
order in �a*−ass

* � gives

�1

2
�*�� +

1

D
ass

* Pxy
*ss�ass

* Aij
*

=
2

D
ass

* Pxy
*ssPij

*ss − ass
* �ixPjy

*ss − ass
* � jxPiy

*ss − �*���Pij
*ss − �ij�

�A5�

and

� 1

D
Pxy

�*ss� +
1

D
ass

* Axy�ass
* Aij

*

=
2

D
Pxy

*ssPij
*ss +

2

D
ass

* Axy
* Pij

*ss +
2

D
ass

* Pxy
*ssAij

* − �ixPjy
*ss

− � jxPiy
*ss − ass

* �ixAjy
* − ass

* � jxAiy
* − �*��Aij . �A6�

The first of these is satisfied identically by Eqs. �A1� and
�A2� while the second gives

1

D
ass

*3AxyAij + ass
* ��*�� +

1

2
�*���Aij −

2

D
ass

*2AxyPij
*�ss�

+ ass
*2�ixAjy + ass

*2� jxAiy = �*���Pij
ss�*� − �ij� . �A7�

In component form this is
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1

D
ass

*3AxyAyy + ass
* ��*�� +

1

2
�*���Ayy −

2

D
ass

*2AxyPyy
*ss

= �*���Pyy
*ss − 1� ,

1

D
ass

*3Axy
2 + ass

* ��*�� +
1

2
�*���Axy −

2

D
ass

*2AxyPxy
*ss + ass

*2Ayy

= �*��Pxy
*ss. �A8�

Substituting

Axy = DC/ass
*2,

�1 − �ix�Aii = �1 − �ix�DB/ass
* ,

�
ii

Aii = 0 �A9�

gives

BC + ��*�� +
1

2
�*���B −

2

D
CPyy

*ss =
1

D
�*���Pyy

*ss − 1� ,

C2 + ��*�� +
1

2
�*���C −

2

D
ass

* CPxy
*ss + ass

*2B

=
1

D
�*��ass

* Pxy
*ss �A10�

and the steady state condition makes this

BC + ��*�� +
1

2
�*���B −

2

D
CPyy

*ss =
1

D
�*���Pyy

*ss − 1� ,

C2 + ��*�� +
3

2
�*���C + ass

*2B = −
1

2
�*���*�� .

�A11�

The solution is

B = Pyy
*ss 1

D

2C�� − �*��

C�� + �*�� +
1

2
�*��

�A12�

with C�� being the real root of

4C3 + 8��*�� + �*���C2

+ �4�*2�� + 14�*���*�� + 7�*2���C + �*���2�*2��

− �*���*�� − 2�*2��� = 0. �A13�

In summary, near the steady state, the pressure takes the
form

Pij = nkBT�Pij
*ss + Aij

* �a* − ass
* � + ¯ �

with

Axy
* = DC/ass

*2 = � �*��
��*�� + �*���2�2C��

�*��
= −

1

ass
* Pxy

*ss2C��
�*��

,

�1 − �ix�Aii
* = DB/ass

* =
1

ass
* Pyy

*ss 2C�� − �*��

C�� + �*�� +
1

2
�*��

,

Axx
* = − �D − 1�

1

ass
* Pyy

*ss 2C�� − �*��

C�� + �*�� +
1

2
�*��

. �A14�

This gives

lim
T→T0

� �Pij

�T
� = n0kB�Pij

*ss −
1

2
ass

* Aij
*� ,

lim
T→T0

� �Pij

�n
� = kBT0�Pij

*ss − ass
* Aij

* � . �A15�

2. Higher order moments

The general moment equations are

1

2
��*�� +

2

D
a*Pxy

�*��a* �

�a* MIN

* + ��*�� −
N

D
a*Pxy

�*��MIN

*

+ a*PIN
�iNxMIN−1y

* = �*��MIN

�le*�. �A16�

In the linear approximation, writing

MIN

* = MIN

*ss + 2AIN

* �a* − ass
* � + ¯ , �A17�

where the factor of 2 is introduced to agree with the notation
for the pressure, gives

��*�� −
N

D
a*Pxy

�*��MIN

*ss + a*PIN
�xiN

MIN−1y
*ss = �*��MIN

�le*�

�A18�

and

1

D
�Pxy

�*ss� + ass
* Axy

�*��ass
* AIN

* + ��*�� +
N

2
�*���AIN

*

+ ass
* PIN

�iNxAIN−1y
*

=
1

2
�N

D
ass

* Axy
�*� +

N

D
Pxy

�*ss��MIN

*ss −
1

2
PIN

�iNxMIN−1y
*ss .

�A19�

For N�2 these are simple linear equations for MIN

*ss and AIN

* .
They have the common form

ZIN

* + ass
* XNPIn

�iNxZIN−1y
* = RIN

�A20�

where for ZIN

* =MIN

*ss one has

XN = ��*�� −
N

D
a*Pxy

�*��−1

,

RIN
= �*��MIN

�le*�, �A21�

whereas for ZIN

* =AIN

*ss one has
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XN = � 1

D
ass

*2Axy
* + �*�� +

�N − 1�
2

�*���−1

= �C�� + �*�� +
�N − 1�

2
�*���−1

,

RIN
=

1

2
XN�N

D
�ass

* Axy
* + Pxy

*ss�MIN

*ss − PIN
�iNxMIN−1y

*ss � .

�A22�

The solution of Eq. �A20� is straightforward and the result is

ZIN

* = RIN
− Xass

* PIn
��iNxRyIN−1

�

+ �2!��Xass
* �2PIn

��iNx�iN−1xRyyIN−2
�

− �3!��Xass
* �3PIn

��iNx�iN−1x�iN−2xRyyyIN−3
� + ¯

+ �N!��Xass
* �NRy¯y�i1x ¯ �iNx, �A23�

thus giving explicit expressions for both MIN

*ss and AIN

* .
Using these results, derivatives of the moments in the

steady state can easily be evaluated. Using

�a*

�n0
= −

a*

n0
,

�a*

�T0
= −

a*

2T0
�A24�

gives

lim
T→T0

� �MIn

�n
� = m�2kBT0

m
�N/2�MIN

*ss −
1

2
a*AIN

* � ,

lim
T→T0

� �MIn

�T
� = mn0T0

−1�2kBT0

m
�N/2�N

2
MIN

*ss −
1

4
a*AIN

* � .

�A25�

It is also useful to calculate

lim
T→T0

� �����T�− �*�� −
2

D
a*Pxy

* �
��


= −

2

D
���0�T0�Pxy

*ss + ass
* Axy

* � lim
T→T0

�a*

��
�A26�

so that

lim
T→T0

� ���t
�0�T�
�T

� =
1

D
���0�ass

* �Pxy
*ss + ass

* Axy
* �

=
1

2
���0��2C�� − �*��� ,

lim
T→T0

� ���t
�0�T�
�n

� =
2

D
���0�

T0

n0
ass

* �Pxy
*ss + ass

* Axy
* �

= ���0�
T0

n0
�2C�� − �*��� . �A27�

APPENDIX B: TRANSPORT COEFFICIENTS
IN THE STEADY STATE

In this appendix, the equations for the transport coeffi-
cients in the steady state are solved. Note that throughout this
appendix, the summation convention is not used.

1. Viscosity

The viscosities are determined by Eq. �98� which is

− ass
* �ijxb

ss �ay + ass
* �xi� jyab

ss + ass
* �xj�iyab

ss + ��*�� + �*����ijab
ss

−
2ass

*

Dn0kB
� �

�T
Pij

�0��
ss

�xyab
ss

= − �−1��0��ab�n0� �

�n
Pij

�0��
ss

− Pij
�ss��

−
2�−1��0�
Dn0kB

Pab
�ss�� �

�T
Pij

�0��
ss

+ �−1��0���biPja
�ss� + �bjPia

�ss�� . �B1�

Using Eq. �A15�, this becomes

− ass
* �ijxb

ss �ay + ass
* �xi� jyab

ss + ass
* �xj�iyab

ss + ��*�� + �*����ijab
ss

−
2ass

*

D
�Pij

*ss −
1

2
ass

* Aij
*��xyab

ss

= n0kBT0�−1��0��ass
* Aij

*��ab +
1

D
ass

* Pab
*ss�

−
2

D
Pij

*ssPab
*ss + �biPja

*ss + �bjPia
*ss� . �B2�

It is convenient to introduce a scaled viscosity

�ijab
* =

���0�
n0kBT0

�ijab
ss �B3�

and the abbreviations

Y = ��*�� + �*���−1,

Rijab = Y�ass
* Aij

*��ab +
1

D
ass

* Pab
*ss� −

2

D
Pij

*ssPab
*ss

+ �biPja
*ss + �bjPia

*ss� �B4�

so that the defining equation can be written as

�ijab
* = Rijab + ass

* Y�ijxb
* �ay − ass

* Y�xi� jyab
* − ass

* Y�xj�iyab
*

+
2ass

*

D
�Pij

*ss −
1

2
ass

* Aij
*�Y�xyab

* . �B5�

It is easiest to separate this into two cases. For a�y, the
second term on the right drops out giving

�ijab
* = Rijab − ass

* Y�xi� jyab
* − ass

* Y�xj�iyab
*

+
2ass

*

D
�Pij

*ss −
1

2
ass

* Aij
*�Y�xyab

* , a � y �B6�

and the indices a and b are passive in the sense that the
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equations are invariant with respect to their values so that the
only important indices are i and j. To solve this requires
knowledge of �iyab

* =�yiab
* and �xyab

* which satisfy

�iyab
* = Riyab − ass

* Y�xi�yyab
* +

2ass
*

D
�Piy

*ss −
1

2
ass

* Aiy
* �Y�xyab

* ,

a � y ,

�xyab
* = Rxyab − ass

* Y�yyab
* +

2ass
*

D
�Pxy

*ss −
1

2
ass

* Axy
* �Y�xyab

* ,

a � y . �B7�

Finally, these in turn require knowledge of �yyab
* which sat-

isfies

�yyab
* = Ryyab +

2ass
*

D
�Pyy

*ss −
1

2
ass

* Ayy
* �Y�xyab

* , a � y .

�B8�

Using this to eliminate �yyab
* in the previous equation gives

an explicit solution for �xyab
* ,

�1 −
2ass

*

D
�Pxy

*ss −
1

2
ass

* Axy
* �Y

+
2ass

*2

D
�Pyy

*ss −
1

2
ass

* Ayy
* �Y2��xyab

*

= Rxyab − ass
* YRyyab, a � y . �B9�

Using Eqs. �A1�, �A2�, �A9�, and �A12�, the prefactor is

�1 −
2ass

*

D
�Pxy

*ss −
1

2
ass

* Axy
* �Y +

2ass
*2

D
�Pyy

*ss −
1

2
ass

* Ayy
* �Y2�

= �1 +
�*�� + C��
�*�� + �*��

+
�*��

C�� + �*�� +
1

2
�*�� �B10�

so

�xyab
* = �1 +

�*�� + C��
�*�� + �*��

+
�*��

C�� + �*�� +
1

2
�*��

−1

��Rxyab − ass
* YRyyab�, a � y ,

�yyab
* = Ryyab +

2ass
*

D
�Pyy

*ss −
1

2
ass

* Ayy
* �Y�xyab

* , a � y ,

�iyab
* = Riyab − ass

* Y�xi�yyab
* +

2ass
*

D
�Piy

*ss −
1

2
ass

* Aiy
* �Y�xyab

* ,

a � y ,

�ijab
* = Rijab − ass

* Y�xi� jyab
* − ass

* Y�xj�iyab
*

+
2ass

*

D
�Pij

*ss −
1

2
ass

* Aij
*�Y�xyab

* , a � y . �B11�

Then, the remaining unknown viscosities correspond to the
case a=y and satisfy

�ijyb
* = Rijyb + ass

* Y�ijxb
* − ass

* Y�xi� jyyb
* − ass

* Y�xj�iyyb
*

+
2ass

*

D
�Pij

*ss −
1

2
ass

* Aij
*�Y�xyyb

* . �B12�

This has the same structure as Eq. �B6� with Rijab→Rijyb
+ass

* Y�ijxb
* where �ijxb

* is now known. The solution is there-
fore analogous

�xyyb
* = �1 +

�*�� + C��
�*�� + �*��

+
�*��

C�� + �*�� +
1

2
�*��

−1

��Rxyyb + ass
* Y�xyxb

* − ass
* YRyyyb − ass

*2
Y2�yyxb

* � ,

�yyyb
* = Ryyab + ass

* Y�yyxb
*

+
2ass

*

D
�Pyy

*ss −
1

2
ass

* Ayy
* �Y�xyyb

* ,

�iyyb
* = Riyyb + ass

* Y�iyxb
* − ass

* Y�xi�yyyb
* +

2ass
*

D
�Piy

*ss

−
1

2
ass

* Aiy
* �Y�xyyb

* ,

�ijyb
* = Rijyb + ass

* Y�ijxb
* − ass

* Y�xi� jyyb
* − ass

* Y�xj�iyyb
*

+
2ass

*

D
�Pij

*ss −
1

2
ass

* Aij
*�Y�xyyb

* . �B13�

2. Thermal conductivity

From Eq. �100�, the generalized heat conductivities �ijka
ss

are solutions of

�−1��0�� ���t
�0�T�
�T

�
ss

�ijka
ss + ��*�� +

3

2
�*����ijka

ss

+ ass
* Pijk�xk�ijya

ss

= −
�−1��0�

mn0
Pijk� �

�T
Pak

�0��
ss

Pij
ss + �−1��0�� �

�T
Mijka

�0� �
ss

.

�B14�

Using Eqs. �A15�, �A27�, and �A25� this becomes
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�C�� + �*�� + �*����ijka
ss + ass

* Pijk�xk�ijya
ss

=
n0T0kB

2

m���0��− Pijk�Pka
*ss −

1

2
ass

* Aka
* �Pij

*ss

+ 4�2Mijka
*ss −

1

4
a*Aijka

* �� . �B15�

Introducing the scaled transport coefficient

�ijka
* =

m���0�
n0kB

2T0

�ijka
ss �B16�

and the definitions

X = �C�� + �*�� + �*���−1,

Qijka = X�− Pijk�Pka
*ss −

1

2
ass

* Aka
* �Pij

*ss + 8Mijka
*ss − a*Aijka

* �
�B17�

the equation to be solved becomes

�ijka
* + ass

* XPijk�xi�kjya
* = Qijka. �B18�

This is of the same form as Eq. �A20� �note that the index a
plays no role in this equation and that Eqs. �65� and �80�
imply that �ijka

ss is symmetric in the first three indices, i , j,
and k� so the solution is obtained from Eq. �A23� and is

�ijka
* = Qijka − ass

* XPijk�xkQijya + 2�ass
* X�2Pijk�xj�xkQiyya

− 6�ass
* X�3�xi�xj�xkQyyya. �B19�

From this, the thermal conductivities entering the Navier-
Stokes equations are

�̄ia
* = �

j

�Qijja − ass
* X�xiQjjya� − 2ass

* XQixya + 2�ass
* X�2Qiyya

+ 4�ass
* X�2�xiQxyya − 6�ass

* X�3�xiQyyya. �B20�

3. Coupling of density gradients to the heat flux

The transport coefficient governing the contributions of
density gradients to the heat flux satisfies

�−1��0�� ���t
�0�T�
�n

�
ss

�ijka
ss + ��*�� +

3

2
�*����ijka

ss

+ ass
* Pijk�xk�ijya

ss

= −
�−1��0�

mn0
Pijk� �

�n
Pak

�0��
ss

Pij
ss + �−1��0�� �

�n
Mijka

�0� �
ss

.

�B21�

Using Eqs. �A15�, �A27�, and �A25� this becomes

��*�� +
3

2
�*����ijka

ss + ass
* Pijk�xk�ijya

ss

=
�−1��0�

m
�kBT0�2�− Pijk�Pka

*ss − ass
* Aka

* �Pij
*ss

+ 4�Mijka
*ss −

1

2
ass

* Aijka
* � − �2C�� − �*������0��ijka

* � ,

�B22�

so that defining

�ijka
ss =

�−1��0�
m

�kBT0�2�ijka
* �B23�

the equation for �ijka
ss becomes

��*�� +
3

2
�*����ijka

* + ass
* Pijk�xk�ijya

*

= − Pijk�Pka
*ss − ass

* Aka
* �Pij

*ss + 4�Mijka
*ss −

1

2
ass

* Aijka
* �

− �2C�� − �*������0��ijka
* . �B24�

Again, noting that the index a is passive in this equation and
that �ijka

ss is symmetric in i , j, and k, this is again of the same
form as Eq. �A20� so that

�ijka
* = Qijka − ass

* XPijk�xkQijya + 2�ass
* X�2Pijk�xj�xkQiyya

− 6�ass
* X�3�xi�xj�xkQyyya, �B25�

with

X = ��*�� +
3

2
�*���−1

,

Qijka = X„− Pijk�Pij
*ss − ass

* Aij
* �Pij

*ss + 4Mijka
*ss − 2ass

* Aijka
*

− �2C�� − �*������0��ijka
*

… . �B26�

The transport coefficients required for the Navier-Stokes or-
der equations are

�̄ia
* = �

j

�Qijja − ass
* X�xiQjjya� − 2ass

* XQixya + 2�ass
* X�2Qiyya

+ 4�ass
* X�2�xiQxyya − 6�ass

* X�3�xiQyyya. �B27�
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